
1 negbinom: Negative Binomial Regression for
Event Count Dependent Variables

Use the negative binomial regression if you have a count of events for each ob-
servation of your dependent variable. The negative binomial model is frequently
used to estimate over-dispersed event count models.

1.0.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "negbinom", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

1.0.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for negative binomial regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [7]). The default type of
robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [3].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
frame; or as order.by = ~z, where z is a variable in the data frame).
The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [7] for more options.

1.0.3 Example

Load sample data:

> data(sanction)

Estimate the model:

> z.out <- zelig(num ~ target + coop, model = "negbinom", data = sanction)

> summary(z.out)
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Set values for the explanatory variables to their default mean values:

> x.out <- setx(z.out)

Simulate fitted values:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)
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1.0.4 Model

Let Yi be the number of independent events that occur during a fixed time
period. This variable can take any non-negative integer value.

• The negative binomial distribution is derived by letting the mean of the
Poisson distribution vary according to a fixed parameter ζ given by the
Gamma distribution. The stochastic component is given by

Yi | ζi ∼ Poisson(ζiµi),

ζi ∼
1

θ
Gamma(θ).
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The marginal distribution of Yi is then the negative binomial with mean
µi and variance µi + µ2

i /θ:

Yi ∼ NegBinom(µi, θ),

=
Γ(θ + yi)

y! Γ(θ)

µyii θ
θ

(µi + θ)θ+yi
,

where θ is the systematic parameter of the Gamma distribution modeling
ζi.

• The systematic component is given by

µi = exp(xiβ)

where xi is the vector of k explanatory variables and β is the vector of
coefficients.

1.0.5 Quantities of Interest

• The expected values (qi$ev) are simulations of the mean of the stochastic
component. Thus,

E(Y ) = µi = exp(xiβ),

given simulations of β.

• The predicted value (qi$pr) drawn from the distribution defined by the
set of parameters (µi, θ).

• The first difference (qi$fd) is

FD = E(Y |x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,
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where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to

uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

1.0.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "negbinom",

data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– theta: the maximum likelihood estimate for the stochastic parameter
θ.

– SE.theta: the standard error for theta.

– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: a vector of the fitted values for the systemic com-
ponent λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-
likelihood plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:
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– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution
defined by (µi, θ).

– qi$fd: the simulated first differences in the simulated expected values
given the specified values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Negative Binomial Model

Kosuke Imai, Olivia Lau, and Gary King. negbinom: Negative Binomial Regres-
sion for Event Count Dependent Variables, 2011

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The negative binomial model is part of the MASS package by William N. Venable
and Brian D. Ripley [6]. Advanced users may wish to refer to help(glm.nb) as
well as [5]. Robust standard errors are implemented via sandwich package by
Achim Zeileis [7].Sample data are from [4].
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