

Yuma Test Harness

Contents

1 Introduction .. 2
1.1 Glossary ... 2
1.2 References ... 2
1.3 Assumptions and Caveats Error! Bookmark not defined.

2 Pre-Requisites .. 3
2.1 System Configuration ... 3
2.2 Yuma Sources .. 3

3 Overview ... 4
3.1 Yuma Test Strategy Overview .. 4
3.1.1 The Integration Test Harness ... 4
3.1.2 The System Test Harness .. 4
3.1.3 Commonality between the System and Integration Test Harnesses 4
3.2 Test Harness Source Code Layout ... 5

4 Test Harness Overview .. 6
4.1 Atomic Testing .. 6
4.2 Test Fixtures ... 6
4.2.1 Global Test Fixtures .. 7
4.2.2 Suite Shared and Test Specific Fixtures ... 7
4.3 High Level Test Overview ... 7
4.4 Generation of Doxygen Documentation for the Test Harness 8
4.5 Building the Test Harness ... 8
4.5.1 Running All Tests.. 9
4.5.2 Running Individual Tests... 9

5 Guidelines ... 9
5.1 Doxygen ... 9
5.2 Tests must be Atomic ... 9
5.3 Give Each Entity One Cohesive Responsibility ... 9
5.4 No Code Duplication ... 9
5.5 Code for Scalability ... 9

6 Installing BOOST .. 10

1 Introduction

This document presents an overview of the Yuma Testing Strategy. It includes the
following:

• Pre-requisites for using the test harness

• Guide to the Test Harness Directory Structure

• A high level overview of the Yuma Test Harness

1.1 Glossary

NETCONF An IETF network management protocol that provides mechanisms for
create, retrieve, modify and delete operations on configuration data

Yuma An OpenSource NETCONF Implementation

1.2 References

For more information on Yuma / Netconf operation see the following references:

NETCONF Wikipedia
Definition

http://en.wikipedia.org/wiki/Netconf

Netconf Central http://www.netconfcentral.org/

BOOST http://www.boost.org

C++ Coding Standards
Sutter / Alexandrescu

http://en.wikipedia.org/wiki/Netconf
http://www.netconfcentral.org/
http://www.boost.org/

2 Pre-Requisites

2.1 System Configuration

The table below identifies the system configuration necessary for building and running he
Yuma Test Harness:

Component Version Description

Operating System Ubuntu 10.04

Compiler GCC 4.4 or later

Boost Boost 1.47 The Boost C++ libraries,
including Boost::Test

Lib Xml libxml2 / libxml2-dev Gnome XML library, used by
Yuma

Python 2.6 Python interpreter, used for
simple scrpits

GDB 7.1-1ubuntu2 GNU Debugger

Libbz2-dev 1.05-4ubuntu0.1 Bzlib2 is required to build Boost

Doxygen Source code documentation
tool

Graphviz Graphical Visualisation Tool
used by Doxygen

Texlive-font-utils Text formatting used by
doxygen

Libncursesw5 5.7 Shared libraries for terminal
handling

libssh2-1-dev 1.2.2-1 SSH2 ssh2 client-side libary

2.2 Yuma Sources

The Yuma source code can be checked out from the following location:

https://yuma.svn.sourceforge.net/svnroot/yuma

https://yuma.svn.sourceforge.net/svnroot/yuma

3 Overview

3.1 Yuma Test Strategy Overview

The Yuma test strategy consists can be split into two sections, Integration Testing and
System Testing. The test harnesses are based around the BOOST::TEST libraries and
utilise C++0x extensions available with the GCC 4.4 C++ Compiler.

3.1.1 The Integration Test Harness

The Integration test harness is built as a stand alone executable that includes most of the
Yuma agt and ncx sources (which make up the system under test). The diagram below
presents an overview of the Integration Test Harness:

3.1.2 The System Test Harness

The System test harness is a stand alone program that is capable of running full Netconf
sessions against a full Yuma/Netconf Server (the system under test). The System test
harness provides a fast way of verifying the behaviour of a full Yuma/Netconf system. It
behaves in the same way as a real Netconf client. To use this test harness the Netconf
Server must have the appropriate Yang and SIL modules installed.

3.1.3 Commonality between the System and Integration Test Harnesses

The majority of tests should be developed so they can be used by both the System and
Integration test harnesses.

3.2 Test Harness Source Code Layout

The Yuma test harness source code is located in the netconf/test directory. The table
below presents a breakdown of the test harness directory contents:

Directory Description

netconf The top level directory for Netconf source code.

netconf/agt The Yuma Netconf Agent (agt) sources

netconf/ncx The Yuma Core (ncx) sources

netcond/test The root directory of the test harness

integ-tests Home directory for all integration tests.

make-rules Common make rules

modules Root directory for all Netconf modules used by the
test harness.

modules/yang Test harness yang modules

modules/sil Test harness sil modules

Modules/build-sil Root directoru for building SIL modules

stubs Root directory for all stubbed out functionality, as
used by the integration test harness

stubs/agt Stubs for agt components

stubs/ncx Stubs for ncx components

support Root directory for all test support sources

sys-test Home directory for all system tests

test-suites Root directory for all test suites

test-suites/common Test suites that can be run by either the Integration
Test Harness or the System Test Harness

test-suites/integ Test suites that are specific to the Integration Test
Harness

test-suites/system Test suites that are specific to the System Test
Harness

Utils Miscellaneous utilities.

4 Test Harness Overview

The Yuma test harness is driven by BOOST Test, with ‘AUTOMATIC’ registration of test
cases. See [http://www.boost.org/doc/libs/1_47_0/libs/test/doc/html/utf.html]

Most tests consist of a Main Test Module and one or more Test Suites.

The Main Test Module which is responsible for all test wide initialization (initialization of
BOOST::Test and Yuma).

The Test Suites contain one or more atomic test cases.

4.1 Atomic Testing

All tests must be ‘atomic’ and must not rely on the actions of previous tests or the order of
testing. This means that all tests should revert the changes that were made before
terminating.

This allows the execution of either all tests, selected test suites or individual tests.

4.2 Test Fixtures

A test fixture is essentially a combination of setup and teardown functions, associated with
test case. Test fixtures are implemented as C++ classes whose constructor is run at the
start of a test case and whose destructor is run at the end of a test case. Test fixtures can
be attached as follows:

• Globally the test fixture is instantiated once, for the entire test run,.

• Shared test suite level fixture – the same test fixture is shared by all test cases, it
will be instantiated at the start of every test.

• Per test case fixture – a specific test fixture is specified for the individual test
case. It is instantiated only at the start of the specific test case.

http://www.boost.org/doc/libs/1_47_0/libs/test/doc/html/utf.html

4.2.1 Global Test Fixtures

The test harness makes use of global test fixtures to initialise and configure the test run
and to cleanup after the test has completed.

The global test fixture for the Integration Test Harness performs the following operations:

• Configures the test harness context so that tests are run integration test mode, this
involves instantiating a number concrete classes that use direct function calls to
interrogate Yuma.

• Initialisation of Yuma. This is a replacement for Yuma’s cmn_init() function.

• The destructor simply shuts down the Yuma system, tearing down the ncx and agt
modules.

The global test fixture for the System Test Harness performs the following operations:

• Configures the test harness context so that tests are run system test mode. This
involves instantiating a number of concrete classes that use SSH connections to a
remote Netconf Agent..

4.2.2 Suite Shared and Test Specific Fixtures

The suite shared / test specific fixtures perform initialisation and cleanup for each
individual test case. BOOST::Test derives the test case from the specified fixture. This
means that the test case can freely access any public or protected members of the fixture
class.

The Yuma test harness uses these fixtures to implement functions that are common to a
number of tests.

4.3 High Level Test Overview

The diagram below presents a high level overview of the test harness software.

Each test case uses it’s NCQueryTestEngine to inject Netconf Messages into Yuma and
check their result. The actual injection / retrieval of the results is performed by a concrete
NCSession (e.g. SpoofNCSession). Detailed descriptions for these classes and their
member functions can be found as Doxygen comments in the source code.

4.4 Generation of Doxygen Documentation for the Test Harness

Doxygen Documentation can be generated by:

cd <YUMA_SRC>/netconf/test
./make-doxygen.sh

4.5 Building the Test Harness

The test harness must be built using the following procedure:

1. Set the $YUMA_SRC environment variable to the top level of the Yuma checkout
that is being tested, e.g.

export YUMA_SRC = ~ /yuma/branches/v1-dev-001

2. Build the test SIL libraries.

a. cd $YUMA_SRC/Netconf/test/modules/build-sil/XXXX

b. make

3. Build the test harnesses

a. cd $YUMA_SRC/Netconf/test/integ-tests

b. make

The integration test harness can now be run.

4.5.1 Running All Tests

All test harnesses (and all tests) can be run using the Python utility script alltests.py, e.g:

./alltests.py

4.5.2 Running Individual Tests

To run a specific test:

./test-name –run_test=<suite name>/<test case name>

5 Guidelines

The test harness follows a ‘loose coding standard’ based around the guidelines in the set
out by Herb Sutter and Andrei Alexandrescu in the book C++ Coding Standards. A few key
rules to follow are identified below:

5.1 Doxygen

All functions should be documented with Doxygen comments in the header file. These
comments make up the main documentation for the test harness.

5.2 Tests must be Atomic

As stated earlier, all tests must be atomic and must not rely on be run after any other test.

5.3 Give Each Entity One Cohesive Responsibility

Give each class function or variable a single well defined responsibility. This helps with
maintenance and future understanding of the software. As a guideline keep functions small
– preferably small enough to fit completely on one screen.

5.4 No Code Duplication

Code duplication must be avoided wherever possible. Any functionality that might be
useful to future tests should be placed inside a separate class / function within one of the
support directories.

5.5 Code for Scalability

• When writing test support functions use the most generic and abstract means to
implement a piece of functionality

• New functionality must not be bolted on to existing functions – place it in a new
function or class.

• Common functionality should be generalized. Use templates to minimize code
duplication

6 Installing BOOST

To build, configure and install BOOST follow the instructions below:

1. Remove any previously installed versions of boost using Synaptic Package
Manager

2. Download the BOOST libraries from www.boost.org

3. Create a local directory (e.g. ~/boost) and copy in the downloaded boost archive.

4. Extract the archive

tar xvfj boost_1_47_0.tar.bz2

5. Configure Boost build boostrap

cd boost_1_XX_XX
./bootstrap.sh --prefix=/usr/local

6. Build boost (this will take about 20 minutes)

./b2

7. Install Boost – this should put the boost libraries in /usr/local/include and
/usr/local/lib

sudo ./b2 install

8. Add /usr/local/lib to the runtime library search path

sudo cat ‘#boost libraries’ >> /etc/ld.so.conf.d/libboost.conf
sudo cat ‘/usr/local/lib’ >> /etc/ld.so.conf.d/libboost.conf

9. Refresh library search path

sudo ldconfig

http://www.boost.org/

	1 Introduction
	1.1 Glossary
	1.2 References

	2 Pre-Requisites
	2.1 System Configuration
	2.2 Yuma Sources

	3 Overview
	3.1 Yuma Test Strategy Overview
	3.1.1 The Integration Test Harness
	3.1.2 The System Test Harness
	3.1.3 Commonality between the System and Integration Test Harnesses

	3.2 Test Harness Source Code Layout

	4 Test Harness Overview
	4.1 Atomic Testing
	4.2 Test Fixtures
	4.2.1 Global Test Fixtures
	4.2.2 Suite Shared and Test Specific Fixtures

	4.3 High Level Test Overview
	4.4 Generation of Doxygen Documentation for the Test Harness
	4.5 Building the Test Harness
	4.5.1 Running All Tests
	4.5.2 Running Individual Tests

	5 Guidelines
	5.1 Doxygen
	5.2 Tests must be Atomic
	5.3 Give Each Entity One Cohesive Responsibility
	5.4 No Code Duplication
	5.5 Code for Scalability

	6 Installing BOOST

