
KisSplice

De-novo calling alternative splicing events

from RNA-seq data

User's guide, version 2.1.0

January 28, 2014

Contents

1 KisSplice, at a glance 2

2 KisSplice software package 2
2.1 CeCILL licence . 2
2.2 Reference . 2
2.3 Mailing list . 2
2.4 Requirements . 2
2.5 Installation . 2

3 Usage 3
3.1 Pre-treatment . 3
3.2 Job calibration . 3
3.3 Testing KisSplice in a couple of minutes 4
3.4 Options . 5
3.5 Relative coverage . 6
3.6 Genome-size option . 6
3.7 counts option . 7
3.8 Paired-end reads . 7

4 I/O 8
4.1 Input . 8
4.2 Output . 8
4.3 Uncoherent Bubbles . 10
4.4 Un�nished BCCs . 10

5 TroubleShooting 10

1

1 KisSplice, at a glance

KisSplice is dedicated to de-novo calling of alternative splicing events from one or sev-
eral RNA-seq datasets. In addition to splicing events, KisSplice detects small indels (<3
nucleotides), and provides a list of potential inexact tandem repeats and SNPs.

2 KisSplice software package

2.1 CeCILL licence

This software is governed by the CeCILL licence. Details are mentionned in the COPYING �le.

2.2 Reference

If you use KisSplice in a published work, please cite the following reference:

Gustavo AT Sacomoto, Janice Kielbassa, Rayan Chikhi, Raluca Uricaru, Pavlos Antoniou,
Marie-France Sagot, Pierre Peterlongo* and Vincent Lacroix*, KISSPLICE: de-novo calling

alternative splicing events from RNA-seq data, BMC Bioinformatics 2012, 13(Suppl 6):S5

2.3 Mailing list

To be informed about new releases, bugs or updates, please subscribe to the mailing list
kissplice-users@lists.gforge.inria.fr

To do so, please subscribe at : http://lists.gforge.inria.fr/cgi-bin/mailman/listinfo/
kissplice-users Do not hesitate to write to the list for any comment or questions on
KisSplice.

2.4 Requirements

KisSplice uses the CMake building tool. If it is not directly available on your system, you can
download it from http://www.cmake.org/cmake/resources/software.html. KisSplice

relies on zlib that is included in most systems, however it is also available from http:

//zlib.net.

2.5 Installation

KisSplice is written in C/C++ and is running on Mac OS X and Linux 64 bits platforms.
A version of python 2.7 is needed.
In order to install KisSplice, you need to:

1. Uncompress the archive �le:

tar zxvf kissplice-1.x.x.tar.gz

2

2. Go into the corresponding directory:

cd kissplice-1.x.x

3. Launch cmake:

cmake .

4. Compile the package:

make

5. Install the package on your system:

sudo make install

If you want to install the package in a particular directory /path_to_install/, then
replace the step 3 by:

cmake . -DCMAKE_INSTALL_PREFIX=/path_to_install/

If you do not install the software, the program is available in the repertory bin.

3 Usage

3.1 Pre-treatment

KisSplice can be run on raw data. However, as any assembler, it performs better if the
data is pre-treated. Common pre-treatment includes polyA tail removal and quality �lter.
These �lters are not included in KisSplice distribution but can easily be found. For instance,
FASTX Toolkit can be used to trim the reads, i.e. removing the last bases for which quality
is below a threshold (we commonly use 20). Reads shorter than 20 nt are then removed.

3.2 Job calibration

The �rst time you run KisSplice, you may be interested in getting quickly initial results. We
recommend to run it on a subset of your data (say 10%). It will give you an idea of the
results and also an estimation of the running time for the full dataset.
We also suggest to use a higher k value than the default one during your �rst jobs (we rec-
ommend k> length of the read/2). Increasing the value of k will solve more issues due to
repeats, though it will be followed by a loss of sensitivity. For a very �rst run such a loss can
be a good compromise, with the production of more speci�c results.

You might be wondering about the disk space you need to have avalaible for a job.
KisSplice writes in several �les and temporary �les, and we currently consider that you must
have two to three times the size of your data in free space to run KisSplice under proper
conditions.

3

3.3 Testing KisSplice in a couple of minutes

The example that will be presented only deals with alternative splicing events. However, other
types of outputs are very similar and their interpretation can be easily inferred from this case.

However, please note that the SNPs ouput �le is slightly di�erent from others, as it di�er-
enciates two types of events. Type0a indicates that there is a single SNP within the sequence,
while (Type0b would indicate the presence of multiple SNPs, i.e. several SNPs separated by
less than k nt, or a pattern created by paralogous genes).

The sample_example directory contains two �les containing simulated reads from two
transcripts of D. melanogaster; reads1.fa and reads2.fa. There is a single splicing event
(exon skipping).

Once you installed KisSplice, you can run it with defaults parameters (k = 41) on the
two fasta �les present in the sample_example directory of the release:

bin/kissplice -r sample_example/reads1.fa -r sample_example/reads2.fa

less results/results_reads1_reads2_k25_coherents_type_1.fa

The result �les can be found in the results directory:
results_reads1_reads2_k41_coherents_type_1.fa which contains the alternative splic-
ing event (Fig. 1). The other �les are empty.

We can look more in detail the results. Please see also the output section (4.2, page 8)
The output is pairwise, representing the variation between two sequences. Here it is an

exon skipping : there is an inclusion in the path called "upper path" which is not in the path
called "lower path". There are also the counts of the two isoforms:

• inclusion isoform : 0 (for condition 1, reads1.fa �le) , 50 (for condition 2, reads2.fa �le)

• exclusion isoform : 7 , 0

Figure 1: Content of the �le results_reads1_reads2_k41_coherents_type_1.fa, the al-
ternative splicing event found. In red is the variable part in the inclusion isoform.

The splicing event is condition-speci�c with the inclusion isoform covered by 52 reads in
condition 2 and the exclusion isoform covered by 9 reads in condition 1.

You may want to map the sequences against a reference genome if you have one to see
what the output corresponds to. This can be done using blat, GMAP or any other RNA/DNA
alignment software.

4

Figure 2: Using the reference genome, it is possible to see that the type 1 event is an exon
skipping (�gure obtained using the ucsc web plateform)

3.4 Options

Type kissplice -h to see the options and parameters:

usage: kissplice [-h] [-r READFILES] [-k KVAL] [-l LLMAX] [-m LL_MIN]

[-M UL_MAX] [-g GRAPH_PREFIX] [-o OUT_DIR] [-d PATH_TO_TMP]

[-t NBPROCS] [-s] [-v] [-u] [-c MIN_COV]

[-C MIN_RELATIVE_COV] [-z GENOME_SIZE] [-e MIN_EDIT_DIST]

[-y MAX_CYCLES] [--mismatches MISM] [--counts COUNTSMETHOD]

[--timeout TIMEOUT] [--version] [--output-context]

[--output-path]

kisSplice - splicing event caller

optional arguments:

-h, --help show this help message and exit

-r READFILES input fasta/q read files or compressed (.gz) fasta/q

files (mutiple, such as "-r file1 -r file2...")

-k KVAL k-mer size (default=41)

-l LLMAX maximal length of the shorter path (default: 2k-1)

-m LL_MIN minimum length of the shorter path (default 2k-8)

-M UL_MAX maximum length of the longest path (default 10000),

skipped exons longer than UL_MAX are not reported

-g GRAPH_PREFIX path and prefix to pre-built de Bruijn graph (suffixed

by .edges/.nodes) if jointly used with -r, graph used

to find bubbles and reads used for quantification

-o OUT_DIR path to store the results (default = ./results)

-d PATH_TO_TMP specific directory (absolute path) where to build

temporary files (default temporary directory

otherwise)

-t NBPROCS number of cores (must be <= number of physical cores)

-s Will not ouput SNPs (save time)

-v Verbose mode

-u 0 or 1. 1 to keep the nodes/edges file for unfinished bccs, 0 to discard (default:1)

-c MIN_COV an integer, k-mers present strictly less than this

number of times in the dataset will be discarded

5

(default 2)

-C MIN_RELATIVE_COV a percentage from [0,1), edges with relative coverage

below this number are removed (default 0.02)

-z GENOME_SIZE estimated genome/transcriptome size (default =

1000000000)

-e MIN_EDIT_DIST edit distance threshold, if the two sequences (paths)

of a bubble have edit distance smaller than this

threshold, the bubble is classified as an inexact

repeat (default 3)

-y MAX_CYCLES maximal number of bubbles enumeration in each bcc. If

exceeded, no bubble is output for the bcc (default

10000)

--mismatches MISM Maximal number of substitutions authorized between a

read and a fragment (for quantification only), default

0

--counts COUNTSMETHOD 0,1 or 2 . Changes how the counts will be reported. If

0 (default): total counts, if 1: counts on junctions,

if 2: all counts.

--min_overlap Sets how many nt must overlap a junction to be counted by --counts option. (Default =3).

--timeout TIMEOUT max amount of time (in seconds) spent for enumerating

bubbles in each bcc. If exceeded, no bubble is output

for the bcc (default 900)

--version show program's version number and exit

--output-context Will output the maximum non-ambiguous context of a

bubble

--output-path Will output the id of the nodes composing the two

paths of the bubbles.

3.5 Relative coverage

The option −C edits the De-Bruijn graph constructed by removing edges non covered. It
is a local �lter. For a speci�c node, if one of its outgoing edges is covered less than C (in
percentage) it is removed. For a small value of C, this option allows to remove arti�cial edges
due to overlapping of two k-mers (not supported per the reads) or sequencing errors.

3.6 Genome-size option

The −z option is used for a rough estimation of the graph size. It is an estimation of unique
k-mers contained into the dataset. A good evaluation of this parameter leads to an optimal
graph construction step in term of memory consumption and time. On one hand, if the value
is too low, the construction will take fewer memory but will take more time. On the other
hand, if the value is too high, it will use a lot of memory. By default z is set to a billion (1
000 000 000) which is a good trade-o� for most datasets.

6

3.7 counts option

KisSplice can use several method to quantify the paths found in the DBG. The quanti�ca-
tion depends on the min_overlap parameters. A read is used (and counted) if and only if
it overlaps (by at least min_overlap nt) the variable part of the path. We can distinguish
various parts in the paths of an event (please see Fig. 3):

• AS: junction between the left part of the path (A in green) and the variable part of the
longer path (S in red). A read is in AS if it has more than min_overlap nt in S and A

• SB: junction between the right part of the path (B in blue), and the variable part of
the longer path (S in red). A read is in SB if it has more than min_overlap nt in S
and B.

• S: the variable part (in red), the di�erence between the upper and lower path. A read
is in S if it has less than min_overlap nt in A or B.

• AB: junction between A and B (left, resp. right part of the path) in the shorter path.
A read is in AB if it has more than min_overlap nt in A and B.

• ASSB: the junction AS and SB with S. A read is counted in ASSB if if has more than
min_overlap nt in A and B (and so if fully in S).

Figure 3: Example of quanti�cation. In lower case, the context obtained using the �output-

context parameter.

The −− counts options can take three values: 0,1,2. If does not a�ect the quanti�cation
itself, but changes the output.

1. the total count is reported (default behaviour) as CX

2. the counts are written for ASX, SBX, ASSBX, ABX

3. all the counts are reported (ASX, SBX, SX, ASSB and ABX)

Here X indicates the read �le used for the quanti�cation. It is possible to retrieve the
total count C using: C = (AS − ASSB) + (SB − ASSB) + S + ASSB

3.8 Paired-end reads

For now, paired-end reads are not supported. We recommend that you use them as two input
�les :

kissplice -r condition1/1 -r condition1/2

7

4 I/O

4.1 Input

KisSplice may be used either directly from one or several sets of reads, or from a bi-directed
de-Bruijn graph.
In the �rst case, one or several fasta/fastq �les containing the reads have to be provided. In
the second case, the de-Bruijn graph alone has to be provided (in dot format). In the input
fasta/q �les, each read should be written on exactly two lines (one for the fasta identi�er and
one for the sequence).
The input �les should have one of the following extensions: fq, fastq, txt or fasta, fa.
KisSplice also handles compressed reads (.fa.gz)

To have an example of the input �les, run KisSplice on the test data (provided in the
directory sample_example), consisting of two read �les in fasta format. You will �nd the
constructed de-Bruijn graph built by KisSplice in the KisSplice directory.

4.2 Output

If it was not provided, a de-Bruijn graph is built for the N fasta �les (read) given as input;
the following three �les are created in the results directory (for k = XX):

• graph_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX.nodes for the nodes
of the de-Bruijn graph

• graph_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX.edges for its edges.

• graph_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX.solid_kmers_binary_with_count

a binary �le relevant for the option -C

• graph_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX.counts for the k-mers
count, created only if KisSplice was run with option -C.

In the node �le, the 1st column is the node ID, the 2nd its (forward) sequence.
In the �le describing the edges, the 1st and 2nd column are the IDs of the nodes that are

connected by an edge, the 3rd column codes for the direction of the edge (FF = from the
forward sequence of a node to the forward sequence of the other node, RR= from reverse to
reverse, FR and RF). Note that if node A is connected with node B by an edge with direction
�FF� (�FR�), node B is connected to node A by an edge directed �RR� (�RF�) and vice versa.

Moreover, �ve fasta �les for the results are created:

1. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_0.fa: SNPs
or sequencing errors

2. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_1.fa: alter-
native splicing events

3. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_2.fa: inex-
act tandem repeats

8

4. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_3.fa: short
indels

5. results_NameReadFile1_..._NameReadFileN_kXX_type_4 .fa: all others, composed
by a shorter path of length > 2k − 1 not being a SNP

If the read �les (option -r) are provided as input �les, the �rst four fasta �les are checked for
read coherency, which means that each nucleotide of each sequence has to be covered by at
least one read. If KisSplice is used with option -g (only the de-bruijn graph is provided), a
check for read coherency is not possible due to missing information about read coverage.

Fasta �les are organized as follows, each 4-lines groups are an event

> identifier_upper_ path

sequence upper path

> identifier_lower_path

sequence lower path

The identi�er for the upper path is formatted as follows :

>bcc_BB|Cycle_YY|Type_ZZ|upper_path_Length_UU|C1_cov1|C2_cov2[...]|CN_covN|rank_RR

• bcc_BB : Bi-connected component BB the event belongs to

• Cycle_YY : since in each bcc, several cycles may exist, this attribute indicates the ID
of the cycle (here: cycle YY) that generated the bubble

• Type_ZZ: with ZZ=0,1,2,3, the type also corresponds to the type given by the �le name

• upper_path_Length_UU : length (in nucleotides) of the sequence of the upper path of
the bubble

• Cn: with n=1,..., N: coverage of the path using reads from the read �le n; coverage is
the raw count of reads mapping the path with at least k (i.e. the value speci�ed for
the k −mer length) nucleotides.

• rank_RR : The rank is close to 1 if the alleles of the event are condition-speci�c. Other-
wise, it is close to 0. Formally, the rank corresponds to the square of the Phi coe�cient.
In the case where there is one condition, the rank is always 0. In the case where there
are more than two conditions, it is calculated for all pairs of conditions, and the max-
imal phi value is output. Note that the rank is just an indication of the strength of
the association between the allele and a condition but this is not a statistical test. In
particular, for low counts, the rank may be high but a statistical test may give a neg-
ative answer to the question �is there an association between alleles and conditions ?�.
On the other hand, for very large counts, a statistical test may give a positive answer
while the e�ect is very small. The rank helps to measure the strength of the e�ect.

9

The identi�er for the lower path provides virtually the same information, but concerning the
lower (shorter) path of the bubble. In order to facilitate the further post-processing of these
�les, the bcc, cycle, type and rank are repeated, although this information is redundant.

If KisSplice is run with option -r (read �les), the events in the output �les are sorted
with respect to their rank (this is not possible with option -g due to missing information
about read coverage).

4.3 Uncoherent Bubbles

In order for a bubble to be considered as coherent, each nt has to be covered by at least
one read. Uncoherent bubbles are output in a separate �le. In principle, uncoherent bubbles
should correspond to artefacts of the DBG (we lose information when we move from reads to
k-mers). In practice, real events which have a low coverage may produce uncoherent bubbles.
Hence, it may be worth to mine this �le if you are interested in unfrequent events.

4.4 Un�nished BCCs

For some datasets, enumerating all bubbles is very long. Hence, we set a maximum amount
of time (900s by default) that the algorithm spends in each BCC (biconnected component).
If after this time, the BCC is not �nished, the algorithm stops and moves to the next
BCC. In practice, these un�nished BCCs correspond to very repetitive regions of the dataset
(transposable elements...). Running KisSplice with -u 1 option enables to output these
un�nished BCCs for further inspection (for instance using Cytoscape).

5 TroubleShooting

Before running KisSplice on a large dataset, (10 conditions with 100M reads each), which
takes time and memory, we advise to �rst run KisSplice on a subset of your dataset (2
conditions with 10M reads each) and get familiar with the output.

If you encounter problems running KisSplice, this may be due to memory issues. Please
try setting your stack size as unlimited:

> ulimit -s unlimited

If the problem persists, please do not hesitate to contact us.

10

