FLAWFINDER(1) Flawfinder FLAVFINDER(1)

NAME
flawfinder — lexically find potential security flaws ("hits") in source code

SYNOPSIS
flawfinder [-—help|-h] [-—version] [——listrules]
[——allowlink] [-—followdotdir] [-—nolink]
[-—patch=filenam¢-P filenamé
[-—inputs|-I] [——minlevel=X | -m X] [-—falsepositve|-F]
[-—neverignore|-n]
[——regex=PATTERN| —e PATTERN
[-—contex§—c] [-—columng-C] [--dataonly|-D] [-—html|-H] [-—-immediatg-i] [--singleling-9
[-—omittime] [-—quiet|-Q]
[--loadhitlist=F] [-—savehitlist= F] [-—diffhitlist= F]
[-—] [source code file or source root directory]+

DESCRIPTION

Flavfinder searches through C/C++ source code looking for potential secunity fld@ run flavfinder,
simply give flawfinder a list of directories or filedzor each directory gien, all files that hae GC++ file-
name &tensions in that directory (and its subdirectories, readly3iwill be examined. Thusfor most
projects, simply gie flawfinder the name of the source cad@pmost directory (use.” f or the current
directory), and flawfinder will examine all of the projed@C++ source code. If you only want tovea
changesrevienved, s&e a unified diff of those changes (created by GNU f'dif* or "svn diff" or "git dif'")
in a patch file and use the ——patch (-P) option.

Flawfinder will produce a list ofhits” (potential security flas), sorted by risk; the riskiest hits arewho
first. Therisk level is shown inside square brackets araties from 0, very little risk, to 5, great riskhis

risk level depends not only on the functiorytton the values of the parameters of the functieor.exam-

ple, constant strings are often lessyistkan fully variable strings in mgrcontexts, and in those comntts

the hit will have a bwer risk level. Flawfinder knows about gette(a common library for internationalized
programs) and will treat constant strings passed through gettext as thopgletheconstant strings; this
reduces the number of false hits in internationalized progr&tesfinder will do the same sort of thing
with _T() and _TEXT(), common Microsoft macros for handling internationalized progretas/finder
correctly ignores most text inside comments and strings. Normally flawfinder shows all hits with a risk
level of at least 1, but you can use the ——mugleoption to shav only hits with higher risk leels if you
wish. Hit descriptions also note the redat Common Weakness Enumeration (CWE) identifier(s) in
parentheses, as discussed Wwelblawfinder is officially CWE-Compatible.

Not every hit is actually a security vulnerabiljitgnd not @ery security vulnerability is necessarily found.
Nevertheless, flawfinder can be an aid in finding and réngpsecurity vulnerabilitiesA common way to
use flawfinder is to first apply flawfinder to a set of source codexamiree the highest-risk item&.hen,
use ——inputs to examine the input locations, and check te mia& that only Igd and safe input alues
are accepted from untrusted users.

Once yowe audited a program, you can mark source code lines that are actually fine but cause spurious
warnings so that flawfinder will stop complaining about thefo. mark a line so that these warnings are
suppressed, put a specially-formatted comment either on the same line (after the source code) or all by
itself in the previous line. The comment mustdnane of the tw following formats:

. /I Flawfinder: ignore
. /* Flawfinder: ignore */

For compatibility’s sake, you can replace "Flawfinder:" with "ITS4:" or "RATS:" in these specially-format-
ted comments. Since stpossible that such lines are wrong, you can use theverigeore option, which
causes flawfinder to wer ignore al line no matter what the comment direesi say (more confusingly
——neverignore ignores the ignores).

Flawfinder uses an internal database called ‘to&eset’; the ruleset identifies functions that are common
causes of security fies. Thestandard ruleset includes a large number of different potential problems,
including both general issues that can impagt@&++ program, as well as a number of specific Unig-lik

Flawfinder 3Aug 2014 1

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

and Wndows functions that are especially problemafihe —-listrules option reports the list of current
rules and their default riskvels. Asnoted abue, every potential security fla found in a gien source
code file (matching an entry in the ruleset) is calletiig™ and the set of hits found duringyaparticular
run of the program is called th#itlist.” Hitlists can be sa&d (using ——swehitlist), reloaded back for
redisplay (using ——loadhitlist), and you canwhanly the hits that are different from another run (using
——diffhitlist).

Flawfinder is a simple tool, leading to some fundamental pros and Etagfinder works by doing simple
lexical tokenization (skipping comments and correcthetoking strings), looking for token matches to the
database (particularly to find function call$lawfinder is thus similar to RATS and ITS4, which also use
simple lexical toknization. Fla/finder then examines thexteof the function parameters to estimate risk.
Unlike tols such as splint, gecivarning flags, and clang, flawfinder doest use or hee acess to infor
mation about control flg, data flav, or data types when searching for potential vulnerabilities or estimating
the level of risk. Thus,flawfinder will necessarily produce mafalse posities for vulnerabilities anddil

to report maw vulnerabilities. Orthe other hand, flefinder can find vulnerabilities in programs that can-
not be built or cannot be liekl. Itcan often wrk with programs that cannoten be mmpiled (at least by
the reviewer’s tools). Flavfinder also doeshget as confused by macro definitions and other oddities that
more sophisticated tools V&touble with. Flawfinder can also be useful as a simple introduction to static
analysis tools in general, since it is easy to start using and easy to understand.

Any filename gren on he command line will be examined/éa if it doesnt havea usual C/C++ filename
extension); thus you can forcewteinder to examine anspecific files you desire. While searching directo-
ries recursiely, flawfinder only opens and examines regular files thae HAC++ filename etensions.
Flawvfinder presumes that files are C/C++ files ifythavethe extensions ".c", ".h", ".ec", ".ecp", ".pgc",
".C", ".cpp", ".CPP", ".cxx", ".cc", ".CC", ".pcc", ".hpp", or ".H'The filename‘~"' means the standard
input. To prevent security problems, special files (such as device special files and named pipesyare al
skipped, and by default symbolic links are skipped (the ——allowlink option follows symbolic links).

After the list of hits is a brief summary of the results (use -D to vertiis information). It will shav the
number of hits, lines analyzed (as reported by wc —I), and thsigath source lines of code (SLOC) ana-
lyzed. Aphysical SLOC is a non-blank, non-comment line. It will thenvshiose number of hits at each
level; note that there will neer be a lit at a level lower than minleel (1 by default). Thus, “[0] 0 [1] 9"
means that at el 0 there were 0 hits reported, and atelel there were 9 hits reported. It will xteshav

the number of hits at agn levd or larger (so lgel 3+ has the sum of the number of hits atde3, 4, and

5). Thus,an entry of "[0+] 37" shows that atvig O or higher there were 37 hits (the 0+ entry willvays

be the same as the "hits" number\ado Hits per KSLOC is next shown; this is each of thevéleor
higher" values multiplied by 1000 and divided by the physical SLOC. If symlinks were skipped, the count
of those is reportedIf hits were suppressed (using the "ignore" dikexth source code comments as
described ab@), the number suppressed is report&tie minimum risk leel to be included in the report
is displayed; by default this is 1 (use ——mudeto change this). The summary ends with important
reminders: Notery hit is necessarily a security vulnerabilignd there may be other security vulnerabili-
ties not reported by the tool.

Flawfinder is released under the GNU GPL license version 2 or later (GPLv2+).

Flawfinder works similarly to another program, ITS4, which is not fully open source software (as defined in
the Open Source Definition) nor free saite (as defined by the Free Softwaoeikdation). Theuthor of
Flawfinder has ner seen ITS4$ ©urce code.

BRIEF TUTORIAL
Here’s a brief example of he flawfinder might be used. Imagine that yowéahe C/C++ source code for
some program named xyzzy (which you may or may ne¢ kaitten), and you'e searching for security
vulnerabilities (so you can fix them before customers encounter the vulnerabikgeghis tutorial, [l
assume that you're using a Unixdik/stem, such as Linux, OpenBSD, or MacOS X.

If the source code is in a subdirectory named xyyay would probably start by opening a text wimdo
and using flarfinder’s default settings, to analyze the program and report a prioritized list of potential secu-
rity vulnerabilities (the “less’j ust makes sure the results stay on the screen):

Flawfinder 3Aug 2014 2

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

flawfinder xyzzy | less

At this point, you will see a lge number of entries. Each entry has a filename, a colon, a line namber
risk level in brackets (where 5 is the most risky), a ¢ptgy, the name of the function, and a description of
why flawfinder thinks the line is a vulnerabilitfFlawfinder normally sorts by risk Vel, showing the riski-

est items first; if you hee limited time, its probably best to start working on the riskiest items and continue
until you run out of time. If you want to limit the display to risks with only a certain rigi t& higher,

use the ——minkeel option. If you're getting an raordinary number of false posis because ariable
names look lik dangerous function names, use the —F option to vermeports about them. If you ddn’
understand the error message, please see documents sucMaiinikgeSecue Programs for Linux and
Unix HONTO [http://www.dwheeler.com/secure-prograna http://wwwdwheeler.com/secure-programs
which provides more information on writing secure programs.

Once you identify the problem and understand it, you can fi@dcasionally you may want to re-do the
analysis, both because the line numbers will chamgkto male aure that the ne code doestt’introduce
yet a different vulnerability.

If you've determined that some line ismeally a problem, and you're sure of it, you can insert just before
or on the offending line a comment like

[* Flawfinder: ignore */
to keep them from showing up in the output.

Once yowe done that, you should go back and search for the prograpits, to ma& sure that the pro-
gram strongly filters anof its untrusted inputsFlawfinder can identify manprogram inputs by using the
——inputs option, like this:

flawfinder ——inputs xyzzy

Flavfinder can integrate well withxteeditors and integrated ¥iopment environments; see theaeples
for more information.

Flawfinder includes manother options, including ones to create HTML versions of the output (useful for
prettier displays). The next section describes those options in more detail.

OPTIONS
Flawvfinder has a number of options, which can be grouped into options that control its own documentation,
select input data, select which hits to displsgfect the output format, and perform hitlist management.
Flawfinder supports the standard syntax defined in the POSIX (Issue 7, 2013 Edition) SéiilityrCon-
ventions’. It also supports the GNU long options (double-dash options of fooptior) as ckfined in the
GNU C Library Reference ManuaProgram Argument Syntax Ceentions’ and GNU Coding Standals
“ Standards for Command Line IntecEs’. Long option arguments can be provided ‘asiame=valu€e’or
“-name walue’. Someoptions can only be accessed using the more readable GNU long opti@n-con
tions; common options are also supported by the older single-letter optiemiion.

Documentation
——help

-h Shaw usage (help) information.

—-version Shows (just) the version number and exits.

—listrules List the terms (tokens) that trigger further examination, theiaulefisk level, and the
default warning (including the CWE identifier(s), if applicable), all tab-separated. The terms
are primarily names of potentially-dangerous functioNete that the reported riskvig and
warning for some specific code may be different than the default, dependingvdhehterm
is used. Combine with =D if you do not want the usual heaBewfinder version 1.29
changed the separator from spaces to tabs, and added the default warning field.

Flawfinder 3Aug 2014 3

FLAWFINDER(1)

Flawfinder FLAVFINDER(1)

Selecting Input Data
——allowlink Allow the use of symbolic links; normally symbolic links are skippBdn'’t use this option

if you're analyzing code by others; attackers could doynthings to cause problems for an
analysis with this option enabledror example, an attacker could insert symbolic links to
files such as /etc/passwd (leaking information about the file) or create a circular loop, which
would cause flawfinder to rutfdrever”. Anotherproblem with enabling this option is that

if the same file is referenced multiple times using symbolic links, it will be analyzed multi-
ple times (and thus reported multiple times). Note that flawfinder already includes some
protection against symbolic links to special file types such as device file types (e.g.,
/devizero or C:\mystiffcom1). Notethat for flawfinder ersion 1.01 and before, thisas

the default.

——followdotdir

——nolink

Enter directories whose names begin with ".". Normally such directories are ignored, since
they normally include version control pdte data (such as .git/ or .svn/), configurations, and
so on.

Ignored. Historicallythis disabled follaving symbolic links; this behavior is nothe
default.

——patch=patchfile
—P patchfile Examine the selected files or directoriag, enly report hits in lines that are added or modi-

fied by the gien patch file. The patch file must be in a recognized unifieé fdifmat (e.g.,
the output of GNU "dif-u od new", "svn diff", or "git dif [commit]"). Flanvfinder assumes
that the patch has already been applied to the files. The patch file can also include changes
to irrelevant files (thg will simply be ignored).The line numbers gén in the patch file are
used to determine which lines were changed, so if yoe hadified the files since the
patch file was created, regenerate the patch file ffaiare that the file names of thewe
files given in the patch file must matchxactly, including upper/lower case, path prefix, and
directory separator (\ vs. /POnly unified dif format is accepted (GNU diff, svn diff, and git
diff output is okay); if you hee a dfferent format, again regenerate it first. Only hits that
occur on resultant changed lines, or immediatelywalad belav them, are reportedThis
option implies ——neerignore.

Selecting Hits to Display

——inputs
Shaw only functions that obtain data from outside the program; this also setsehtnl®.

——minlevel=X

-m X

Set minimum risk tegl to X for inclusion in hitlist. This can be from 0 (“no risk”) to 5rfiaxi-
mum risk”); the default is 1.

——falsepositve

-F

Flawfinder

Do not include hits that are likely to balde positres. Currentlythis means that function names
are ignored if thgre not follaved by "(", and that declarations of character arrays taneted.
Thus, if you hge wse a variable named "accessérgwhere, this will eliminate references to this
ordinary \ariable. Thisisn't the de&ult, because this also increases the likelihood of missing
important hits; in particulafunction names in #define clauses and calls through function pointers
will be missed.

3Aug 2014 4

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

——heverignore
-n Never ignore security issuesyen if they havean “ignore’ directive in a omment.

——regexp-PATTERN

-e PATTERN
Only report hits with tet that matches the regular expression patt&inrERN. For example, to
only report hits containing the text "CWE-120", use-tegex CWE-120’. Theseoption flag
names are the same as grep.

Selecting Output Format
——columns

-C Shaw the column number (as well as the file name and line number) of each hit; this is
shawvn after the line number by adding a colon and the column number in the line (the first
character in a line is column number 1). This is useful for editors that can jump to specific
columns, or for intgrating with other tools (such as those to further filter out false posi-

tives).

——context

—-C Shav context, i.e., the line hang the "hit"/potential flow. By default the line is shen
immediately after the warning.

——dataonly

-D Don't display the header and footddse this along with ——quiet to see just the data itself.

——html

-H Format the output as HTML instead of as simple text.

——immediate

i Immediately display hits (dohjust wait until the end).

—=singleline

-S Display as single line of text output for each hit. Useful for interacting with compilation

tools.

——omittime Omit timing information. This is useful for regression tests of flawfinder itself, so that the
output doestt’'vary depending on llong the analysis takes.

——quiet

-Q Don't display status information (i.e., which files are beirgmsined) while the analysis is
going on.

Hitlist Management
——savehitlist=F
Save dl resulting hits (the "hitlist") to F.

Flawfinder 3Aug 2014 5

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

——loadhitlist=F
Load the hitlist from F instead of analyzing source progra¥darning: Donot load hitlists
from untrusted sources (for security reasons).

——diffhitlist= F
Shaw only hits (loaded or analyzed) not in F was presumably created previously using
——savehitlist. Warning: Donot diff hitlists from untrusted sources (for security reasoiifs).
the ——loadhitlist option is not provided, this will shahe hits in the analyzed source code
files that were not previously stored inIFused along with ——loadhitlist, this will stxothe
hits in the loaded hitlist not in FThe diference algorithm is consextive; hits are only con-
sidered the‘'same’ if t hey havethe same filename, line numpeolumn position, function
name, and risk iesl.

EXAMPLES
Here are various examples ofvhto invoke flawfinder The first @amples she various simple command-
line options. Flawfinder is designed to work well withxieeditors and integrated \@opment emiron-
ments, so the next sections shww to integrate flawfinder into vim and emacs.

Simple command-line options
flawfinder /usr/src/linux-3.16
Examine all the C/C++ files in the directory /usr/src/linux-3.16 and all its subdirectories
(recursvely), reporting on all hits found. By default flawfinder will skip symbolic links and
directories with names that start with a period.

flawfinder ——minlevel=4 .
Examine all the C/C++ files in the current directory and its subdirectories (xabgrsbnly
report vulnerabilities el 4 and up (the tw highest risk lgels).

flawfinder ——inputs mydir
Examine all the C/C++ files in mydir and its subdirectories (reay$j and report func-
tions that tak inputs (so that you can ensure thaythiker the inputs appropriately).

flawfinder ——neverignor e mydir
Examine all the C/C++ files in the directory mydir and its subdirectories, includangttes
hits marked for ignoring in the code comments.

flawfinder —QD mydir
Examine mydir and report only the actual results (rengpthe header and footer of the out-
put). Thisform is useful if the output will be piped into other tools for further analyBie
—C (-—columns) and -S (--singleline) options can also be useful if you're piping the data
into other tools.

flawfinder —-QDSC mydir
Examine mydir reporting only the actual results (no header or footégch hit is reported
on one line, and column numbers are reporfédis can be a useful command if you are
feeding flawfinder output to other tools.

flawfinder ——quiet ——html ——context mydir > results.html
Examine all the C/C++ files in the directory mydir and its subdirectories, and produce an
HTML formatted \ersion of the results. Source code management systems (such as

Flawfinder 3Aug 2014 6

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

SourceForge and gannah) might use a commanddithis.

flawfinder ——quiet ——savehitlist saved.hits *.[ch]
Examine all .c and .h files in the current directddpn't report on the status of processing,
and sae the resulting hitlist (the set of all hits) in the filerad hits.

flawfinder ——diffhitlist saved.hits *.[ch]
Examine all .c and .h files in the current directend shev any hits that werert'aready in
the file saed.hits. Thiscan be used to stwoonly the ‘new” vulnerabilities in a modified
program, if seed.hits was created from the older version of the program being analyzed.

flawfinder ——patch recent.patch .
Examine the current directory recway, but only report lines that were changed or added
in the already-applied patchfile nanmedent.patch

flawfinder ——regex "CWE-120|CWE-126" src/
Examine directongrc recursvely, but only report hits where CWE-120 or CWE-126 apply.

Invoking from vim
The text editor vim includes a "quickfix" mechanism that works well withfitaler, so hat you can easily
view the warning messages and jump to theveelesource code.

First, you need to iroke flawfinder to create a list of hits, and there are tays to do this. The firstay
is to start flawfinder first, and then (using its outpuipke vim. Thesecond way is to start (or continue to
run) vim, and then woke flawfinder (typically from inside vim).

For the first vay, run flawfinder and store its output in some FLAWFILE (saywfile"), then irvoke vim
using its -q option, li& this: "vim -q flawfile". The second way (starting flawfinder after starting vim) can
be done a legion of ays. Onés to invoke flawfinder using a shell command, ":\flindercommand >
FLAWFILE", then follov that with the command ".cf FMAFILE". Anotherway is to gore the fla/finder
command in your makefile (as, sayseudocommand l&"flaw"), and then run ":makflaw".

In all these cases you need a command for flawfinder toAytausible command, which places each hit
in its own line (-S) and remves headers and footers that would confuse it, is:

flawfinder -SQD .

You can nav use various editing commands towithe results. The command ":cn" displays the next hit;
":cN" displays the previous hit, and ":cr" rewinds back to the first"mibpen" will open a winde to show

the current list of hits, called the "quickfix window"; ":cclose" will close the quickfix windid the huffer

in the used winde has changed, and the error is in another file, jumping to the erroaikilMou hare o
malke aure the windw contains a bffer which can be abandoned before trying to jump tonafile, say by
saving the file; this pxents accidental data loss.

Invoking from emacs
The tet editor / operating system emacs includes "grep mode" and "compile mode" mechanisroskthat w
well with flawfinder, making it easy to vie warning messages, jump to the vefg source code, and fix
ary problems you find.

First, you need to iroke flawfinder to create a list of warning messag®eu can use "grep mode" or
"compile mode" to create this list. Often "grep mode" is morevaoant; it leves cmmpile mode
untouched so you can easily recompile oncewmdianged somethingHowever, if you want to jump to
the exact column position of a hit, compile mode may be moneecimt because emacs can use the col-
umn output of flawfinder to directly jump to the right location withoyt soecial configuration.

Flawfinder 3Aug 2014 7

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

To use grep mode, enter the command "M-x grep" and then enter the neadiediéiacommand.To use
compile mode, enter the command "M-x compile" and enter the needdohdier command. This is a
meta-key mmmand, so you'll need to use the mets for your leyboard (this is usually the ES@W. As
with all emacs commands, ydluheed to press RETURN after typing "grep" or "compile”. So onyman
systems, the grep mode isdked by typing ESC x g r e p RETURN.

You then need to enter a command, removing wieateas there before if necessark plausible com-
mand is:

flawfinder -SQDC .

This command makewery hit report a single line, which is much easier for tools to handle. The quiet and
dataonly options renve the other status information not needed for use inside emacs. The trailing period
means that the current directory and all descendents are searched for C/C++ code, and analyzed for flaws.

Once yowe invoked flawfinder, you can use emacs to jump around in its resultse command C-x °
(Control-x backtick) visits the source code location for thet mearning message. C-u C-x ~ (control-u
control-x backtick) restarts from thediening. You can visit the source for amparticular error message
by moving to that hit message in the *compilationiffer or *grep* huffer and typing the returnel
(Technical note: in the compilationutfer, this invokes compile-goto-erra) You can also click the
Mouse-2 button on the error message (you tdwed to switch to the *compilation* buffer first).

If you want to use grep mode to jump to specific columns of a hitllym€d to specially configure emacs
to do this. To do this, modify the emacs variable "gremeep-alist”. Thisvariable tells Emacs ho to
parse output of a "grep" command, similar to thgable "compilation-erreregexp-alist" which lists ari-
ous formats of compilation error messages.

Invoking from Integrated Development Environments (IDES)
For (other) IDEs, consult your IDE'®t of plug-ins.

COMMON WEAKNESS ENUMERATION (CWE)
The Common Wakness Enumeration (CWE) is “a formal list or dictionary of common software weak-
nesses that can occur in sadire’s achitecture, design, code or implementation that can leaxptoigble
security vulnerabilities... created to seras a ommon language for describing software security weak-
nesses’(http://cwe.mitre.org/aboutlfy.html). ©r more information on CWEs, see http://cwe.mitre.org.

Flawfinder supports the CWE and idiofally CWE-Compatible. Hit descriptions typically include a rele-

vant Common VWéakness Enumeration (CWE) identifier in parentheses where there is known to be a rele-
vant CWE. For example, man of the uffer-related hits mention CWE-120, the CWE identifier fouffer

copy without checking size of inpufaka “Classic Buffer Ogrflow”). In a few ases more than one CWE
identifier may be listed. The HTML report also includggdrtet links to the CWE definitions hosted at
MITRE. Inthis way flawfinder is designed to meet the CWE-Output requirement.

Many of the CWEs reported by fldinder are identified in the CWE/SANS top 25 list 2011
(http://cwe.mitre.ay/top25/). Mawy people will want to search for CWEs in this list, such as CWE-120
(classic lffer overflow), When flawfinder maps to a CWE that is more general than a top 25 item, it lists it
as more-general:more-specific (e.g., CWE-119:CWE-120), where more-general is the actual mfpping.
flawfinder maps to a more specific CWE item that is a specific case of a top 25 item, it is listed in the form
top-25/more-specific (e.g., CWE-362/CWE-367), where the real mapping is the more specific CWE entry
If the same entry maps to multiple CWEs, the CWEs are separated by commas (this often occurs with
CWE-20, Improper Input 8idation). Thissimplifies searching for certain CWEs.

CWE version 2.7 (released June 23, 2014) was used for the magpiegurrent CWE mappings select

the most specific CWE the tool can determine. In thenogt CWE security elements (signatures/patterns
that the tool searches for) could theoretically be mapped to CWE-676 (Use of Potentially Dangerous Func-
tion), kut such a mapping would not be useful. Thus, more specific mappings were preferred where one
could be found.Flawfinder is a lexical analysis tool; as a result, it is impractical for it to be more specific
than the mappings currently implemented. This also means that it iglyrtiikneed much updating for

Flawfinder 3Aug 2014 8

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

map currency; it simply doegnhave enough information to refine to a detailed CWEkelehat CWE
changes would typically f#ct. Thelist of CWE identifiers was generated automatically using ‘&mak
shav-cwes", so there is confidence that this list is corrBtéase report CWE mapping problems as bugs if
you find ary.

Flawvfinder may fail to find a vulnerabilityeven if flawfinder cavers one of these CWE weaknesséhat

said, flawfinder does find vulnerabilities listed by the CWEs\&s and it will not report lines without
those vulnerabilities in mgncases. Thusas required for antool intending to be CWE compatible,
flawfinder has a rate ofalse posities less than 100% and a rate of falsgaiges less than 100%.
Flawvfinder almost alays reports whener it finds a match to a CWE security element (a signature/pattern
as defined in its database), though certain obscure constructs can cause it to fail (see BUGS below).

Flawfinder can report on the folldng CWEs (these are the CWEs that flawfindefersy “*' * marks those
in the CWE/SANS top 25 list):

e CWE-20: Improper Input Validation

» CWE-22: Improper Limitation of a Pathname to a Restricted Directory (“Patrerfed”)

» CWE-78: Improper Neutralization of Special Elements used in an OS Command (“OS Command Injec-
tion”)*

 CWE-119: Improper Restriction of Operations within the Bounds of a MemorieB(d parent of
CWE-120*, so this is shown as CWE-119:CWE-120)

» CWE-120: Buffer Cop without Checking Size of Input (“Classic Buffer Overflow”)*

» CWE-126: Buffer Over-read

» CWE-134: Uncontrolled Format String*

» CWE-190: Integer Overfl® or Wraparound*

» CWE-250: Execution with Unnecessary Privileges

» CWE-327: Use of a Broken or RigkCryptographic Algorithm*

» CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (“Race Condi-
tion”)

» CWE-377: Insecure Temporary File

« CWE-676: Use of Potentially Dangerous Function*

» CWE-732: Incorrect Permission Assignment for Critical Resource*

» CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (child of CWE-120*, so
this is shown as CWE-120/CWE-785)

» CWE-807: Reliance on Untrusted Inputs in a Security Decision*
» CWE-829: Inclusion of Functionality from Untrusted Control Sphere*

You can select a specific subset of CWESs to report by using-thegex’ (-e) option. This option accepts

a regular expression, so you can select multiple CWEs, é-g:tegex "CWE-120|CWE-126"! If you
select multiple CWEs with|*’ on a command line you will typically need to quote the parameters (since an
unquoted “|' is the pipe symbol). Flawfinder is designed to meet the CWE-Searchable requirement.

If your goal is to report a subset of CWESs that are listed in a file, that can beedaiea Lhix-like g/s-
tem using the'--regex’ aka “—e” option. Thefile must be in regular expression form&or example,
“ flawfinder -e $(cat filel)'would report only hits that matched the patternfitel”. If filel contained
“ CWE-120|CWE-126it would only report hits matching those CWEs.

A list of all CWE security elements (the signatures/patterns thtrftier looks for) can be found by using

the ‘—-listrules” option. EacHine lists the signature token (typically a function name) that may lead to a
hit, the defult risk level, and the default warning (which includes the default CWE identifieoj. most
purposes this is also enough if you want to see what CWE security elements map to which CWEs, or the
reverse. For example, to see the most of the signatures (function names) that map to CWE-327, without

Flawfinder 3Aug 2014 9

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

seeing the delllt risk level or detailed warning text, runflawfinder —-listrules | grep CWE-327 | cut *f1’
You can also see the teks without a CWE mapping this way by runnitipwfinder -D --listrules | grep

-v CWE-". However, while ——listrules lists all CWE security elements, it only lists the default mappings
from CWE security elements to CWE identifietsdoes not include the refinements that flawfinder applies
(e.g., by examining function parameters).

If you want a detailed and exact mapping between the CWE security elements and CWE identifiers, the
flawfinder source code (included in the digttibn) is the best place for that information. This detailed
information is primarily of interest to thosewfepeople who are trying to refine the CWE mappings of
flawfinder or refine CWE in general. The source code documents the mapping between the security ele-
ments to the respeet CWE identifiers, and is a single Python file. The fules’ dataset defines most

rules, with reference to a function that may mékther refinementsYou can search the dataset for func-

tion names to see what CWE it generates byudgfif first parameter is nonormal” then that is the name

of a refining Python method that may select different CWEs (depending on additional inform@ton).
versely you can search fofCWE-number’ and find what security elements (signatures or patterns) refer

to that CWE identifier For most people, this is much more thanytheed; most people just want to scan

their source code to quickly find problems.

SECURITY
The whole point of this tool is to help find vulnerabilities sg/tb@n be fixed. Havever, devdopers and
reviewers must kne how to devdop secure softare to use this tool, because otherwéstol with a tool
is still a fool My book at http://www.dwheeler.com/secure-programs may help.

This tool should be, at most, a small part of a larger softwastogenent process designed to eliminate or
reduce the impact of vulnerabilitieRevelopers and ndewers need kne how to devdop secure softare,
and theg need to apply this knowledge to reduce the risks of vulnerabilities in the first place.

Different vulnerability-finding tools tend to find different vulnerabilities. Thus, you are biesisiofy
human revies and a variety of tools. This tool can help find some vulnerabilities, but by no means all.

You should alvays analyze @&opyof the source program being analyzed, not a directory that can be modi-
fied by a deeloper while flawfinder is performing the analysis. Thig$peciallytrue if you dont necess-

ily trust a deeloper of the program being analyzed. If an attacker has contepklee files while you'e
analyzing them, the attacker could vediles around or change their contents tosgmethe exposure of a
security problem (or create the impression of a problem where there is ffoya)re worried about mali-
cious programmers you should do thignaay, because after analysis you'll need to verify that the code
evantually run is the code you analyzedlso, do not use the ——allowlink option in such cases; attack
could create malicious symbolic links to files outside of their source code area (such as /etc/passwd).

Source code management systemse (aurceFoge and Saannah) definitely fall into this category; if
you're maintaining one of those systems, firstycopextract the files into a separate directory (that tcan’
be controlled by attackers) before running flawfinder gratiner code analysis tool.

Note that flawfinder only opens regular files, directories, and (if requested) symbolic links; itweill ne
open other kinds of filesyven if a symbolic link is made to themThis counters attackers who insert
unusual file types into the source coditowever, this only works if the filesystem being analyzed tae’
modified by an attacker during the analysis, as recommended. ablais protection also doegnvork on
Cygwin platforms, unfortunately.

Cygwin systems (Unix emulation on top ofifows) hare an additional problem if flafinder is used to
analyze programs that the analyst cannot trust. The problem is due to a design\Vilendows (that it

inherits from MS-DOS). On Wdows and MS-DOS, certain filenames (e.grom1”) are automatically
treated by the operating system as the names of peripherals, and this venraben a full pathname is

given. Yes, Wndows and MS-DOS really are designed this badiyawfinder deals with this by checking

what a filesystem object is, and then only opening directories and regular files (and symlinks if enabled).
Unfortunately this doesrt’work on Cygwin; on at least somergions of Cygwin on some versions oinw

dows, merely trying to determine if a file is a device type can cause the program toAhangkaround is

Flawfinder 3Aug 2014 10

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

BUGS

to delete or rename wrfilenames that are interpreted avide names before performing the analysis.
These so-called ‘resened name$’ are CON, PRN, AX, CLOCK$, NUL, COM1-COM9, and
LPT1-LPT9, optionally followed by an extension (e.gcoml.txt”), in ary directory and in ary case
(Windows is case-insensit).

Do notload or dif hitlists from untrusted source§hey are implemented using the Python pickle module,
and the pickle module is not intended to be secueenagyerroneous or maliciously constructed data.
Stored hitlists are intended for later use by the same user who created the hitlist; in thathienmtstric-
tion is not a problem.

Flawfinder is based on simple text pattern matching, which is part of its fundamental design and not easily
changed. Thislesign apporach leads to a number of fundamental limitations, e.g., a higher false positi
rate, and is the underlying cause of most of the bugs listed here. On theenigti flawfinder doeshet
confused by mancomplicated preprocessor sequences that other tools sometimesochfi&wfinder can

often handle code that cannot link, and sometimes caneoteild.

Flawfinder is currently limited to C/C++In addition, when analyzing C++ it focuses primarily on the C
subset of C++.For example, flawfinder does not report on expressioresdik >> charbuf, where chaub

is a char arrayThat is because flawfinder doasmvetype information, and ">>" is safe with maather
types; reporting on all ">>" would lead to too mdalse posities. Thatsaid, its designed so that adding
support for other languages should be easy where its text-based approach can usefully apply.

Flawfinder can be fooled by usdefined functions or method names that happen to be the same as those
defined as'hits” in its database, and will often trigger on definitions (as well as uses) of functions with the
same name. This is typically not a problem for C colleC code, a function with the same name as a
common library routine name often indicates that thesldper is simply revriting a common library rou-

tine with the same inteate, say for portabilitg'sake. Cprograms tend tovaid reusing the same name for

a dfferent purpose (since in C function names are global tguttef Thereare reasonable odds that these
rewritten routines will be vulnerable to the same kinds of misuse, and thus, reusing these rules is a reason-
able approachHowever, this can be a much more serious problem in C++ code whicliyhaaes classes

and namespaces, since the same method name weyrhey different meanings. The -afsepositie

option can help somewhat in this case. If this is a serious problem, feel free to modify the program, or
process the flawfinder output through other tools to ventiee false posities.

Preprocessor commands embedded in the middle of a parameter list of a call can cause problems in parsing,
in particular if a string is opened and then closed multiple times using an #ifdef .. #else construct,
flawfinder gets confused. Such constructs are bad style, and will confugetinantools too. If you must

analyze such files, rewrite those lines. Thankftlgse are quite rare.

Some compbe or unusual constructs can misleadaffender In particular if a parameter begins with get-
text(" and ends with), flafinder will presume that the parameter of gettext is a constant. This means it
will get confused by patterns ékgettext("hi") + function("bye"). In practice, this doesrseem to be a
problem; gettext() is usually wrapped around the entire parameter.

The routine to detect statically defined character arrays uses simplmatching; some complicated
expressions can cause it to trigger or not trigger unexpectedly.

Flawfinder looks for specific patterns known to be common mastalelavfinder (or ay tool like it) is not
a good tool for finding intentionally malicious code (e.g., Trojan horses); malicious programmers can easily
insert code that would not be detected by this kind of tool.

Flawfinder looks for specific patterns known to be common mistakes in application code. Thuselyis lik

to be less ééctive analyzing programs that arergpplication-layer code (e.g., kernel code or self-hosting
code). Theechniques may still be useful; feel free to replace the database if your situation is significantly
different from normal.

Flawfinders autput format (filename:linenumheollowed optionally by a :columnnumber) can be misun-
derstood if ap source files hee vay weird filenames.Filenames embedding a newline/linefeed character

Flawfinder 3Aug 2014 11

FLAWFINDER(1) Flawfinder FLAVFINDER(1)

will cause odd breaks, and filenames including colon (:) are likely to be misunder$tusds especially
important if flavfinder’s autput is being used by other tools, such as filters or text editors. If you're looking

at nav code, examine the files for such charactdts incredibly unwise to hae sich filenames away;

mary tools cant handle such filenames at aMewline and linefeed are often used as internal data delime-
ters. Thecolon is often used as special characters in filesystems: MacOS uses it as a directory, separator
Windovs/MS-DOS uses it to identify ahe letters, Vihdows/MS-DOS inconsistently uses it to identify spe-

cial devices like CON:, and applications on mamlatforms use the colon to identify URIS/URLEile-

names including spaces and/or tabs tcaise problems for fl&inder, though note that other tools might

have problems with them.

Flawfinder is not internationalized, so it currently does not support localization.

In general, flawfinder attempts to err on the side of caution; it tends to report hits, soytbahthe gam-

ined furthey instead of silently ignoring them. Thus, flawfinder prefers te li@lse posities (reports that
turn out to not be problems) rather than falsgatiees (failure to report on a security vulnerabilityBut

this is a generality; flawfinder uses simplistic heuristics and simply getndverything "right".

Security vulnerabilities might not be identified as such hyfiiteder, and cowversely, some hits arent’really
security vulnerabilities.This is true for all static security scanners, and is especially true for toels lik
flawfinder that use a simple lexical analysis and pattern analysis to identify potential vulneraBititigis.

can sere & a seful aid for humans, helping to identify useful places to examine fudtthats the
point of this simple tool.

SEE ALSO
See the flawfinder website at http://wwiwheeler.com/flawfinderYou should also see tHgecue Pro-
gramming for Unix and Linux HOWT&t http://www.dwheeler.com/secureggrams

AUTHOR
David A. Wheeler (dwheeler@dwheeler.com).

Flawfinder 3Aug 2014 12

